The

Complete
Reference

C++: The Complete Reference

the C language. At their core are the functions malloc() and free(). Each time
malloc() is called, a portion of the remaining free memory is allocated. Each
time free() is called, memory is returned to the system. The region of free memory
from which memory is allocated is called the heap. The prototypes for the dynamic
allocation functions are in <cstdlib>. A C program must use the header file stdlib.h.
All C++ compilers will include at least these four dynamic allocation functions:
calloc(), malloc(), free(), realloc(). However, your compiler will almost certainly
contain several variants on these functions to accommodate various options and
environmental differences. You will want to refer to your compiler's documentation.
While C++ supports the dynamic allocation functions described here, you will
typically not use them in a C++ program. The reason for this is that C++ provides the
dynamic allocation operators new and delete. There are several advantages to using
the dynamic allocation operators. First, new automatically allocates the correct amount
of memory for the type of data being allocated. Second, it returns the correct type of
pointer to that memory. Third, both new and delete can be overloaded. Since new and
delete have advantages over the C-based dynamic allocation functions, their use is
recommended for C++ programs.

This chapter describes the dynamic allocation functions, which were inherited from

calloc

#include <cstdlib>
void *calloc(size_t num, size_t size);

The calloc() function allocates memory the size of which is equal to num * size.
That is, calloc() allocates sufficient memory for an array of num objects of size size.
The calloc() function returns a pointer to the first byte of the allocated region.
If there is not enough memory to satisfy the request, a null pointer is returned. It is
always important to verify that the return value is not null before attempting to use it.
Related functions are free(), malloc(), and realloc().

free

#include <cstdlib>
void free(void *ptr);

The free() function returns the memory pointed to by ptr to the heap. This makes
the memory available for future allocation.

It is imperative that free() only be called with a pointer that was previously allocated
using one of the dynamic allocation system's functions (either malloc() or calloc()).

Chapter 29: The Dynamic Allocation Functions

Using an invalid pointer in the call most likely will destroy the memory management
mechanism and cause a system crash.

Related functions are calloc(), malloc(), and realloc().

malloc

#include <cstdlib>
void *malloc(size_t size);

The malloc() function returns a pointer-to the first byte of a region of memory of
size size that has been allocated from the heap. If there is insufficient memory in the
heap to satisfy the request, malloc() returns a null pointer. It is always important to
verify that the return value is not null before attempting to use it. Attempting to use
a null pointer will usually result in a system crash.

Related functions are free(), realloc(), and calloc().

realloc

#include <cstdlib>
void *realloc(void *ptr, size_t size);

The realloc() function changes the size of the previously allocated memory pointed
to by ptr to that specified by size. The value of size may be greater or less than the original.
A pointer to the memory block is returned because it may be necessary for realloc() to
move the block in order to increase its size. If this occurs, the contents of the old block
are copied into the new block—no information is lost.

If ptr is null, realloc() simply allocates size bytes of memory and returns a pointer
to it. If size is zero, the memory pointed to by ptr is freed.

If there is not enough free memory in the heap to allocate size bytes, a null pointer
is returned, and the original block is left unchanged.

Related functions are free(), malloc(), and calloc().

